Marcus canonical integral for non-Gaussian processes and its computation: pathwise simulation and tau-leaping algorithm.

نویسندگان

  • Tiejun Li
  • Bin Min
  • Zhiming Wang
چکیده

The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence and Speed up of Nested Stochastic Simulation Algorithm

In this paper, we revisit the Nested Stochastic Simulation Algorithm (NSSA) for stochastic chemical reacting networks by first proving its strong convergence. We then study a speed up of the algorithm by using the explicit Tau-Leaping method as the Inner solver to approximate invariant measures of fast processes, for which strong error estimates can also be obtained. Numerical experiments are p...

متن کامل

$S$-Leaping: An adaptive, accelerated stochastic simulation algorithm, bridging $\tau$-leaping and $R$-leaping

We propose the S-leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs ...

متن کامل

Highly accurate tau-leaping methods with random corrections.

We aim to construct higher order tau-leaping methods for numerically simulating stochastic chemical kinetic systems in this paper. By adding a random correction to the primitive tau-leaping scheme in each time step, we greatly improve the accuracy of the tau-leaping approximations. This gain in accuracy actually comes from the reduction in the local truncation error of the scheme in the order o...

متن کامل

Computational complexity analysis for Monte Carlo approximations of classically scaled population processes

We analyze and compare the computational complexity of different simulation strategies for Monte Carlo in the setting of classically scaled population processes. This setting includes stochastically modeled biochemical systems. We consider the task of approximating the expected value of some function of the state of the system at a fixed time point. We study the use of standard Monte Carlo when...

متن کامل

Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method

We show how stiffness manifests itself in the simulation of chemical reactions at both the continuous-deterministic level and the discrete-stochastic level. Existing discrete stochastic simulation methods, such as the stochastic simulation algorithm and the ~explicit! tau-leaping method, are both exceedingly slow for such systems. We propose an implicit tau-leaping method that can take much lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 138 10  شماره 

صفحات  -

تاریخ انتشار 2013